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PRECONDITIONED GL-CGLS METHOD USING
REGULARIZATION PARAMETERS CHOSEN FROM
THE GLOBAL GENERALIZED CROSS VALIDATION

SeYoung Oh* and SunJoo Kwon**

Abstract. In this paper, we present an efficient way to deter-
mine a suitable value of the regularization parameter using the
global generalized cross validation and analyze the experimental
results from preconditioned global conjugate gradient linear least
squares(Gl-CGLS) method in solving image deblurring problems.
Preconditioned Gl-CGLS solves general linear systems with multi-
ple right-hand sides. It has been shown in [10] that this method can
be effectively applied to image deblurring problems. The regulariza-
tion parameter, chosen from the global generalized cross validation,
with preconditioned Gl-CGLS method can give better reconstruc-
tions of the true image than other parameters considered in this
study.

1. Introduction

Regularized deblurring problems, illustrating general space-invariant
imaging system, are often modeled as a linear least squares problem:

(1.1) min
x

(‖Hx− b‖2
2 + λ2 ‖x‖2

2),

where HN×N is a blurring ill-conditioned matrix with some block struc-
tures, b and x represent the observed and the original image respectively.
The positive regularization parameter λ specifies the amount of regular-
ization and, in general, an appropriate value of this parameter is not
known a priori.
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The regularization parameter λ controls the weight given to mini-
mization of the regularization term, relative to the minimization of the
residual norm. The regularization parameter plays a crucial role in the
quality of the solution and thus an appropriate choice of the regular-
ization parameter is important to the regularization method. There are
various techniques to choose the approximate regularization parameters
such as Morozov’s discrepancy principle, L-curve criterion, and gener-
alized cross valication(GCV)[3, 4, 5]. Each of these approaches has its
individual advantages and disadvantages. Especially the GCV method is
prominent for the selection of the crucial regularization parameters since
GCV has good asymptotic properties for large number of noisy data. In
iterative Lagrange method, the Lagrange multiplier also acts as a regu-
larization parameter in the Fast Lagrange method for image restoration
problems with reflective boundary conditions which give better recon-
structions of the true image([9]).

Since the implementations of image restoration problems typically
require the need of formidable data, we generalized the problem (1.1) to
the following minimization problem with respect to the Frobenius norm

(1.2) min
X

(‖HX −B‖2
F + λ2 ‖X‖2

F ),

where BN×s(N À s) is a collection of the column stacking of each
small blocks obtained from partitioning the blurred and noisy image
([1, 8, 10]).

In [10] we applied preconditioned global conjugate gradient linear
least squares(Gl-CGLS) method to the image deblurring problems (1.2)
with reflective boundary conditions and obtained that the Gl-CGLS ap-
proach can significantly improve execution time.

Since the appropriate choice of the regularization parameter in Gl-
CGLS method improves the quality of solution to the regularization
problem, we adapt and extend the prominent GCV technique to the
problem (1.2) in this paper. GCV, whose basic idea is that a good
choice of λ should predict missing values of the data, is a predictive
statistics-based method that does not require a priori estimates of the
error norm.

This paper is discussed in the following dimensions: The brief descrip-
tion of the generalized cross validation method for the problem (1.1) is
summarized in Section 2. In Section 3, we present an appropriate global
generalized cross validation for the problem (1.2). Section 4 illustrates
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an analysis of the extended global generalized cross validation imple-
mented for image deblurring problems with multiple right hand sides.
Numerical experiments and final remarks are described in Section 5.

2. Review of GCV

In this section, we recall generalized cross validation(GCV) as a cho-
sen method for the regularization parameter in (1.1) (see [3, 4, 5, 6]).
The GCV, as an noise-free method, is a predictive method to mini-
mize the predictive mean-square error ‖Hxλ − bexact‖2. Since bexact is
unknown, we want to estimate the regularization parameter λ so that
Hxλ predicts bexact as accurate as possible by using the cross validation
process.

The cross validation separates the given data into two sets and uses
one of the sets to compute an approximate solution to a reduced problem.
The approximate solution is then used to predict the elements in the
other set. Eliminating bi, the ith element of b, we compute the Tikhonov
solution x

(i)
λ of the reduced problem:

x
(i)
λ =

(
(H(i))T H(i) + λ2I

)−1
(H(i))T b(i),

where H(i) and b(i) are the shortened versions of H and b with the ith
row and element eliminated respectively. Then we can use x

(i)
λ to predict

the element bi eliminated corresponding to the missing row of H by
H(i, :)x(i)

λ . The goal is then to determine the regularization parameter
λ that minimizes the prediction errors for all data elements:

λ = arg min
1
N

N∑

i=1

(H(i, :)x(i)
λ − bi)2.

This is a formidable computation task since N number of different
Tikhonov problems are involved. However, using some technical ar-
guments to eliminate the element of b, one can show that the above
minimization problem can be replaced by

λ = arg min
1
N

N∑

i=1

(
H(i, :)xλ − bi

1− hii

)2

,

where xλ is the Tikhonov solution, and hii is the ith diagonal element
of the matrix H(HT H + λ2I)−1HT . Since the value of hii depends on
the permutation of the rows of H arising from the ordering of the data,
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we replace each diagonal element hii with the average of the diagonal
elements which leads to the generalized cross validation(GCV) as in the
definition 2.1. The regularization parameter λ can be chosen from the
following minimization problem

(2.1) λ = arg min
1
N

N∑

i=1

(
H(i, :)xλ − bi

1− trace(H(HT H + λ2I)−1HT )/N

)2

,

which is easier to work with since only one Tikhonov problem is involved.

Note that
N∑

i=1
(H(i, :)xλ − bi)

2 = ‖Hxλ − b‖2
2.

Definition 2.1. The GCV function is defined by

(2.2) G(λ) =
‖Hxλ − b‖2

2

T (λ)2
,

where T (λ) = trace(I −H(HT H + λ2I)−1HT ) is the degree of freedom
and xλ = (HT H + λ2I)−1HT b is the regularization solution of (1.1).

The GCV parameter chosen method for Tikhonov regularization chooses
λ = λGCV as the minimizer of G(λ). An estimate of the regularization
parameter can be found by evaluating the GCV function G(λ) by the
singular value decomposition of H.

Lemma 2.2. If {σi}N
i=1 represents the singular values of H, then

(2.3) G(λ) =

N∑
i=1

(
b̂i

σ2
i +λ2

)2

(
N∑

i=1

1
σ2

i +λ2

)2 ,

where b̂ = UT b.

Proof. Let H ≡ UΣV T be the singular value decomposition of H. By
direct computations,

Hxλ − b = (H(HT H + λ2I)−1HT − I)b

= U(Σ(Σ2 + λ2I)−1Σ− I)UT b.

So ‖Hxλ − b‖2
2 =

N∑
i=1

(
λ2b̂i

σ2
i +λ2

)2
and T (λ) =

N∑
i=1

λ2

σ2
i +λ2 . Thus we obtain

the expression of (2.3).
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If the discrete Picard condition is satisfied and the noise is white, then
the regularization parameter λGCV which minimizes the expected value
of G(λ) is near the minimizer of the expected value of the predictive
mean-square error ‖Hxλ − bexact‖2 ([11]). More precisely, we have the
relation λGCV = λopt(1 + o(1)), where λopt minimizes the predictive
mean-square error and o(1) → 0 as N →∞. Wahba, in the same paper
([11]), gives convergence rates for the expected value of

∥∥xexact − xλGCV

∥∥
2
,

where xλGCV
is the Tikhonov solution.

The degree of freedom T (λ) = N −
N∑

i=1

σ2
i

σ2
i +λ2 is a slowly increasing

function of λ. The following theorem sheds more light on the behavior
of T .

Theorem 2.3. If there is a constant ratio c between the smallest
and the largest singular values, such that σi = cσi+1, i = 1 . . . N (with
0 < c < 1), then

νλ − 1
1− c2

≤ T (λ) ≤ νλ +
1

1− c2
,(2.4)

where νλ is the number of singular values less than λ, i.e., σνλ
< λ ≤

σνλ+1.

Proof. From

T (λ) =

N∑
i=1

λ2

σ2
i + λ2

=

νλ∑
i=1

(
1−

(
1 +

(
λ

σi

)2
)−1)

+

N∑
i=νλ+1

(
1 +

(σi

λ

)2
)−1

,

the following expressions can be obtained
νλ∑
i=1

(
1−

(
1 +

(
λ

σi

)2
)−1)

= νλ −
νλ∑
i=1

(
1 +

(
λ

σi

)2
)−1

and

0 ≤
νλ∑
i=1

(
1 +

(
λ

σi

)2
)−1

≤
νλ∑
i=1

(σi

λ

)2

=
(σνλ

λ

)2 (
c2(νλ−1) + · · ·+ c2 + 1

)
,

0 ≤
N∑

i=νλ+1

(
1 +

(σi

λ

)2
)−1

≤
N∑

i=νλ+1

(
λ

σi

)2

=

(
λ

σνλ+1

)2 (
1 + c2 + · · ·+ c2(N−νλ−1)

)
.

Since 1 + c2 + · · ·+ c2(q−1) = (1− c2q)/(1− c2) where q = νλ or N − νλ,
the right hand sides of the above two formula are less than equal to 1

1−c2

and so (2.4) can be proved.
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The GCV method seeks to locate the transition point where V(λ) =
‖Hxλ−b‖22
T (λ) changes to a rapid increasing variance of λ. But instead of

working with the function V(λ), the GCV method uses the function
G(λ). The denominator T of G(λ) is a monotonically increasing function
of λ such that G(λ) has a minimum in the transition interval [σ1, σN ].
Hence, GCV replaces the problem of locating the transition point for
V by a numerically well defined problem to find the minimum for the
GCV function G(λ). Unfortunately, in the case of the function around
the unique minimum being very flat, some of numerical difficulties can
arise in computing the minimum of G(λ).

3. Extension to the global GCV

In order to drive an extension of the GCV function presented in the
previous section to F -norm based form for linear least squares problems
(1.2) with multiple right hand sides, we define a generalization of the
cross validation for the problem (1.1):

Definition 3.1. The global GCV function is defined by

(3.1) Gglobal(λ) =
‖HXλ −B‖2

F

[trace(I −H(HT H + λ2I)−1HT )]2
,

where Xλ = (HT H + λ2I)−1HT B.

Since Gglobal(λ) is a nonlinear function, the minimizer usually can not
be determined analytically. Some algebraic simplifications are helpful
in order to evaluate this function efficiently. In particular, when the
reflective boundary conditions are used, H can be diagonalized by the
orthogonal two-dimensional discrete cosine transform matrix C and thus
the following Lemma 3.2 can be obtained.

Lemma 3.2. If {ρi}N
i=1 represents the spectrum of H, we can rewrite

Gglobal(λ) as

(3.2) Gglobal(λ) =

s∑
j=1

N∑
i=1

(
1

ρ2
i +λ2 [CBj ]i

)2

(
N∑

i=1

1
ρ2

i +λ2

)2 ,

where Bj is the j-th column of B.
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Proof. To simplify the equality of (3.1), substitute a unitary spectral
decomposition of H, H = CT ΛHC when ΛH = diag(ρ1, ρ2, . . . , ρN ), into
HXλ −B to get

HXλ −B = C(ΛH(Λ2
H + λ2I)−1ΛH − I)CT B.

Showing that ‖Hxλ −B‖2
F =

s∑
j=1

N∑
i=1

(
λ2[CBj ]i
ρ2

i +λ2

)2
and the denominator of

(3.1) becomes
(

N∑
i=1

λ2

ρ2
i +λ2

)2

, we obtain (3.2).

The regularization parameter λ satisfies ρmin ≤ λ ≤ ρmax, where ρmin

is the smallest eigenvalue of H and ρmax is the largest eigenvalue of H.
Now to find a regularization parameter λ by minimizing the global GCV
function (3.2), we solve the following constrained optimization problem
with the bounded constraint of λ:

min
λ

Gglobal(λ)

subject to ρmin ≤ λ ≤ ρmax.
(3.3)

There always exists a local minimizer of Gglobal(λ) which is a contin-
uous function on a closed and bounded interval. To find the constrained
minimum of single variable bounded nonlinear function (3.3), we can use
the algorithm based on golden section search and parabolic interpola-
tion. Golden section search is guaranteed to work in the worst possible
case, and the price of this safety is slowness of convergence which is
only linear([2]). At the general stage k, one has λk−2, λk−1, and λk. Let
λk+1 be the abscissa of the maximum ordinate of a parabola through
(λi, G(λi)), i = k − 2, k − 1, k. This successive parabolic interpolation
and optimization are repeated for the iteration k + 1 with λk−1, λk, and
λk+1 until the error of the executive iterates gets some tolerance.

With λ = λgGCV , the best way to solve (1.2) numerically is to treat
it as a minimization problem

min
X

∥∥∥∥
(

H
λgGCV I

)
X −

(
B
O

)∥∥∥∥
F

(3.4)

in certain situations and use the normal equations

(3.5) (HT H + λ2
gGCV I)X = HT B.

The global conjugate gradient linear least squares(Gl-CGLS) method
as an iterative regularization method was designed for solving large
sparse systems (3.5) of equations with multiple right hand sides. The
symmetric positive definite coefficient matrix HT H+λ2I can be reduced
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to tridiagonal matrix by the global Lanczos algorithm which constructs
an F -orthogonal basis of the matrix Krylov subspace. An approximated
solution can be obtained by LU factorization of the tridiagonal matrix.

Let X0 denote the initial, and define R0 =
(

B
O

)
−

(
H

λgGCV I

)
X0,

P0 = S0 =
(

H
λgGCV I

)T

R0, and γ0 = (S0, S0)F . Then the Gl-CGLS

iterations take the following form for k = 0, 1, 2, ...

1. Qk =

(
H

λgGCV I

)
Pk, αk = γk/(Qk, Qk)F ,

2. Xk+1 = Xk + αkPk, Rk+1 = Rk − αkQk,

3. Sk+1 =

(
H
λI

)T

Rk+1, γk+1 = (Sk+1, Sk+1)F ,

4. βk = γk+1/γk, Pk+1 = Sk+1 + βkPk.

An essential property of Gl-CGLS iterates Xk with residual matrices

Rk is that the corresponding residual matrices Sk =
(

H
λgGCV I

)T

Rk

for normal equations are orthogonal. An important consequence is that
if the starting matrix X0 is zero then the solution Xk increases mono-
tonically with k. It can be shown from the following theorem.

Theorem 3.3. Let ψ(Xk) denote the error function of Gl-CGLS with
the global GCV :

(3.6) ψ(Xk) =
(
XLS −Xk, (HT H + λ2

gGCV I)(XLS −Xk)
)
F

,

where XLS is a solution of (3.4). Then the Gl-CGLS iterate Xk can be
written as

Xk = X0 +

k−1∑
i=0

ψ(Xi)− ψ(Xk)((
H

λgGCV I

)T

Ri,

(
H

λgGCV I

)T

Ri

)2

F

(
H

λgGCV I

)T

Ri,

and if X0 = O then

(3.7) ‖Xk‖2F =

k−1∑
i=0




ψ(Xi)− ψ(Xk)((
H

λgGCV I

)T

Ri,

(
H

λgGCV I

)T

Ri

)

F




2

.

Proof. From (3.6) and Xk+1 = Xk +αkPk, ψ(Xk+1) can be expressed
by

(3.8) ψ(Xk+1) = ψ(Xk)− 2αk(Pk, Sk)F + α2
k

(
Pk,

(
H

λgGCV I

)T

Sk

)

F

.
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The right hand side of (3.8), considered as a function in terms of αk, has

a minimum value at αk =

(
Pk,

(
H

λgGCV I

)T

Sk

)2

F

/(Sk, Sk)F . Substi-

tiuting the αk to (3.8) we get

ψ(Xk)− ψ(Xk+1) =

(
Pk,

(
H

λgGCV I

)T

Sk

)2

F

/(Sk, Sk)F = αk(Sk, Sk)F .

Pk can be written by Pk = (Sk, Sk)F

k∑
j=0

Sj

(Sj ,Sj)F
, and so

Xk = Xk−1 + αk−1Pk−1 = X0 +
k∑

j=0

ψ(Xi)− ψ(Xk)
(Sj , Sj)F

.

In particular, if X0 = O we get (3.7) since {Pk}k=1,2,... are mutually
conjugate.

Since the error function ψ(Xk) decreases monotonically with k, we
conclude that if the starting matrix of Gl-CGLS is zero, then each of
the terms in (3.7) increases with k and thus the solution norm ‖Xk‖F
increases montonically with k. The residual norm ‖Rk‖F , on the other
hand, decreases monotonically with k if X0 = O.

The preconditioned version of (3.5) becomes

(3.9) Ω−T
(
(HT H + λ2

gGCV I)Ω−1Y −HT B
)

= O,

where Ω−T is a preconditioning matrix and Y = ΩX. The matrix(
H

λgGCV I

)
Ω−1 in (3.9) becomes well conditioned.

Summarizing the above process so far, the algorithm for precondi-
tioned Gl-CGLS with the extended global GCV can be presented as
follows.

Algorithm 1. Preconditioned Gl-CGLS with the global GCV

1. Determine the minimizer λgGCV for the constrained minimization problem:

min
λ

Gglobal(λ) subject to ρmin ≤ λ ≤ ρmax.

2. Solve Ω−T (HT H + λ2
gGCV I)X = Ω−T HT B using preconditioned Gl-CGLS:

i. R0 =

(
B
O

)
−

(
H

λgGCV I

)
X0,

ii. P0 = S0 = Ω−T

(
H

λgGCV I

)T

R0, γ0 = (S0, S0)F ,

iii. For k = 0, 1, 2, ... until convergence do

(i) Tk = Ω−1Pk Qk =

(
H

λgGCV I

)
Tk, αk = γk/(Qk, Qk)F ,
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(ii) Xk+1 = Xk + αkTk, Rk+1 = Rk − αkQk,

(iii) Sk+1 = Ω−T

(
H

λgGCV I

)T

Rk+1, γk+1 = (Sk+1, Sk+1)F ,

(iv) βk = γk+1/γk, Pk+1 = Sk+1 + βkPk.

For the reflective boundary condition H has the structures of block
Toeplitz-plus-Hankel with Toeplitz-plus-Hankel blocks which can be di-
agonalized by two dimensional discrete cosine transformation matrix C.
So the preconditioner Ω in (3.9) is set to Ω = CT (|ΛH |2 + λ2I)1/2C.

4. Numerical experiments

Employing the global GCV in preconditioned Gl-CGLS method for
solving image restoration problems with four common test images, we
investigated numerical results to illustrate the effectiveness of the regu-
larization parameters chosen from the minimization of the global GCV
function. For comparison purposes, various possible regularization pa-
rameters chosen experimentally by attempting to minimize the relative
accuracy are used in each test. In order to get the local minimizer λgGCV

of Gglobal(λ), (3.3) was solved by the matlab function fminbnd, a method
based on the golden section search and the parabolic interpolation. Pre-
conditioned Gl-CGLS iteration was stopped once the current residual
satisfies the criteria ‖Rk‖F / ‖R0‖F ≤ tol, where tol is set to 10−4.

In Tables 1 and 2, the numerical results of the preconditioned Gl-
CGLS method applied to four image restorations are presented. The
number of iterations, the execution time for preconditioned Gl-CGLS,
PSNR, and the relative accuracy are shown. The peak-to-signal ra-

tio(PSNR) is defined as 10 log10

(
2552

1
mn

∑
i,j(x

∗
i,j−x̂i,j)2

)
, where x∗i,j and x̂i,j

denote the pixel value of the original image and restored image respec-
tively. PSNR is commonly used to measure the quality of reconstruction
of lossy compression codecs. Typical values for PSNR in lossy image are
between 30 and 50 dB, where higher is better. The relative accuracy

III IVIII

Figure 1. Out-of-focus blur and noisy images
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Figure 2. Reconstructed images

‖x∗ − x̂‖/‖x∗‖ shows how well the true image has been approximated.
Four test images named by I through IV are degraded by out-of-focus

blur and Gaussian blur respectively with adding Gaussian noises. The
out-of-focus blur arises when the lens is out of focus and its point spread
function H(x, y, x, y′) is (πr2)−1 if

√
(x− x′)2 + (y − y′)2 ≤ r and 0

else, where the parameter r characterizes the defocus. The radius of
defocus r is set to 4 and 5 in our test. Figure 1 shows four test images,
blurred by out-of-focus blur and Gaussian noise being added. The sizes
of degraded images are 256-by-256(I, II), 128-by-128(III), and 512-by-
512(IV). Using reflective boundary condition, these images are divided
into the collection of 16, 4, and 64 small block images with the sizes
of 64-by-64 respectively. The reconstructed images by preconditioned
Gl-CGLS with the global GCV are given in Figure 2.

Preconditoned Test Iteration Relative PSNR
Gl-CGLS with image /cpu(sec) accuracy

global GCV I 444/ 82.19 0.036152 28.2821
II 236/ 43.93 0.020535 37.5972
III 264/ 19.58 0.020399 37.9828
IV 206/ 156.29 0.012783 29.8394

λ = 0.1 I 899/ 166.42 0.062700 23.4994
II 892/ 165.16 0.083031 25.4623
III 1074/ 80.78 0.042076 31.6942
IV 612/ 454.96 0.039615 20.0149

λ = 0.8 I 442/ 82.07 0.036121 28.2895
II 241/ 44.42 0.020551 37.5906
III 261/ 19.48 0.020438 37.9660
IV 209/ 155.79 0.012646 29.9326

Table 1. Out-of-focus blur

Table 1 presents the performance results of preconditioned Gl-CGLS
method with regularization parameters chosen from both of the extended
global GCV and the numerical experiments having the relative accuracy
as small as possible. The table shows that preconditioned Gl-CGLS
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Preconditoned Test Iteration Relative PSNR
Gl-CGLS with image /cpu(sec) accuracy

global GCV I 552/ 105.79 0.037913 27.8689
II 340/ 63.58 0.020174 37.7515
III 1210/ 60.59 0.020234 38.0533
IV 196/ 155.65 0.011999 30.3893

λ = 0.008 I 1617/ 302.82 0.025249 31.3998
II 2022/ 384.63 0.020944 37.4259
III 2372/ 107.65 0.021427 37.5555
IV 1028/ 759.56 0.019557 26.1461

λ = 0.01 I 1366/ 252.49 0.026071 31.1215
II 1682/ 309.39 0.020421 37.6458
III 1975/ 89.00 0.019102 38.5531
IV 885/ 655.53 0.016643 27.5474

λ = 0.8 I 543/102.96 0.037891 27.8740
II 336/ 63.18 0.020162 37.7564
III 381/ 17.64 0.022922 36.9700
IV 193/145.93 0.011990 30.3956

Table 2. Gaussian blur

with the global GCV is 2.73 times more efficient on average than pre-
conditioned Gl-CGLS with λ = 0.1 in regard to the relative accuracy
for all four images. PSNR of preconditioned Gl-CGLS with the global
GCV also increases for all cases to 134% on average of PSNR of pre-
conditioned Gl-CGLS with λ = 0.1 which generally indicates that the
reconstruction is of higher quality. For λ = 0.8 which draws the less
relative accuracy among λs tested by many numerical trial and error,
preconditioned Gl-CGLS has reconstructed the closer images to the true
images than preconditioned Gl-CGLS with the global GCV for only two
images(II, III).

Table 2 shows the numerical results for the same number of blocks
of the original images degraded by Gaussian blur and Gaussian white
noises added with standard deviation of 0.001. The performances of pre-
conditioned Gl-CGLS with the global GCV for three images(II, III, IV)
give better reconstructions than those of preconditioned Gl-CGLS with
λ = 0.008, especially the relative accuracy for the image IV decreases
about 1.63 times and PSNR increases about 1.16 times. As shown in
Table 2, however, λ = 0.8 for preconditioned Gl-CGLS method is the
best choice whose performance is a little better than the results with
parameter chosen from the global GCV. Since λ = 0.8 was obtained
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from trial and error, the regularization parameter from the global GCV
can be considered as cost effective in selecting and reliable.

The tables 1 and 2 show also that preconditioned Gl-CGLS with the
global GCV requires less of iterations and cpu times for λ = 0.1, 0.008
and 0.01.

Consequently, we conclude that the preconditioned Gl-CGLS method
with the extended global GCV for large image restoration problems
is stable since the choice of regularization parameter from the global
GCV has better performances than any other known determinations
from many numerical experiments shown in this paper. The exploration
of weighted techniques in the global GCV will be considered as our next
task.
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